云网牛站
所在位置:首页 > Linux教程 > 在Ubuntu系统中使用QtCreator配置Basler相机

在Ubuntu系统中使用QtCreator配置Basler相机

2018-09-01 15:16:22作者:SIENTIST稿源:linux站

关于Basler工业相机的资料非常的少,为了能把Basler相机使用起来,耗费了很多时间,现在终于能在Linux(Ubuntu)系统中调用Basler相机了。下面把详细的过程记录下来。其实Linux下配置Basler摄像头时和配置OpenCV时相差不大。

 

1、下载对应安装包及解压

先去官网下载对应的安装包,在这里

在Ubuntu系统中使用QtCreator配置Basler相机

根据自己的系统选择x86或者x86_64(即x64)版本。我的相机型号为acA1920-40gc。

下载好后,对压缩包进行解压操作,可以选择解压文件到自己选择的目录,此处我们选择默认当前目录:

$ tar -xzvf pylon-5.0.***.tar.gz

解压文件后,打开文件,里边还有一个压缩包,此压缩包即为安装文件,解压此文件到/opt目录下:

$ sudo tar -C /opt -xzvf pylon***armhf.tar.gz

安装完毕后就开始在qtcreator中进行配置,以便在Qtcreator中调用该相机。

 

2、首先打开Qtcreator,如下图所示,创建空项目

在Ubuntu系统中使用QtCreator配置Basler相机

 

3、然后打开.pro文件,在其中配置Basler相机

在Ubuntu系统中使用QtCreator配置Basler相机

先找到INCLUDEPATH的路径:

(1)点开“计算机”,点开文件夹“opt”

在Ubuntu系统中使用QtCreator配置Basler相机

(2)接着打开pylon5文件夹

在Ubuntu系统中使用QtCreator配置Basler相机

那么INCLUDEPATH 的写法为:

INCLUDEPATH += /opt/pylon5/include \

/opt/pylon5/include/pylon

例子:(下图中我是把OpenCV和Basler一起配置)

在Ubuntu系统中使用QtCreator配置Basler相机

 

4、写好了INCLUDEPATH,再来写LIBS

LIBS(我目前知道的)有2种写法:

第一种是直接写出路径来:

例子:

LIBS += /usr/local/lib/libopencv_calib3d.so \

/usr/local/lib/libopencv_calib3d.so.3.2 \

/usr/local/lib/libopencv_calib3d.so.3.2.0 \

/usr/local/lib/libopencv_core.so \

第二种方法是先写一个总的,再写分的:

例子:

LIBS +=-L/opt/pylon5/lib64 \

-lbxapi-5.0.11 \

-lbxapi \

-lFirmwareUpdate_gcc_v3_0_Basler_pylon_v5_0 \

-lGCBase_gcc_v3_0_Basler_pylon_v5_0 \

-lGenApi_gcc_v3_0_Basler_pylon_v5_0 \

-lgxapi-5.0.11 \

这2种写法都是一样的,是通用的。

先找到LIB所在的路径为 opt / pylon5 / lib64

在Ubuntu系统中使用QtCreator配置Basler相机

可以看到里面有很多后缀为.so的文件,把这些文件的路径写到.pro文件中就行了。

在Ubuntu系统中使用QtCreator配置Basler相机

这里我把我总的.pro文件内容贴出来,可供参考:(我这里面同时配置了OpenCV和Basler,注意我的Basler的版本为5.0.11)

TEMPLATE = app

CONFIG += console c++11

CONFIG -= app_bundle

CONFIG -= qt

SOURCES += main.cpp

INCLUDEPATH += /usr/local/include \

/usr/local/include/opencv \

/usr/local/include/opencv2 \

/opt/pylon5/include \

/opt/pylon5/include/pylon

LIBS += /usr/local/lib/libopencv_calib3d.so \

/usr/local/lib/libopencv_calib3d.so.3.2 \

/usr/local/lib/libopencv_calib3d.so.3.2.0 \

/usr/local/lib/libopencv_core.so \

/usr/local/lib/libopencv_core.so.3.2 \

/usr/local/lib/libopencv_core.so.3.2.0 \

/usr/local/lib/libopencv_features2d.so \

/usr/local/lib/libopencv_features2d.so.3.2 \

/usr/local/lib/libopencv_features2d.so.3.2.0 \

/usr/local/lib/libopencv_flann.so \

/usr/local/lib/libopencv_flann.so.3.2 \

/usr/local/lib/libopencv_flann.so.3.2.0 \

/usr/local/lib/libopencv_highgui.so \

/usr/local/lib/libopencv_highgui.so.3.2 \

/usr/local/lib/libopencv_highgui.so.3.2.0 \

/usr/local/lib/libopencv_imgcodecs.so \

/usr/local/lib/libopencv_imgcodecs.so.3.2 \

/usr/local/lib/libopencv_imgcodecs.so.3.2.0 \

/usr/local/lib/libopencv_imgproc.so \

/usr/local/lib/libopencv_imgproc.so.3.2 \

/usr/local/lib/libopencv_imgproc.so.3.2.0 \

/usr/local/lib/libopencv_ml.so \

/usr/local/lib/libopencv_ml.so.3.2 \

/usr/local/lib/libopencv_ml.so.3.2.0 \

/usr/local/lib/libopencv_objdetect.so \

/usr/local/lib/libopencv_objdetect.so.3.2 \

/usr/local/lib/libopencv_objdetect.so.3.2.0 \

/usr/local/lib/libopencv_photo.so \

/usr/local/lib/libopencv_photo.so.3.2 \

/usr/local/lib/libopencv_photo.so.3.2.0 \

/usr/local/lib/libopencv_shape.so \

/usr/local/lib/libopencv_shape.so.3.2 \

/usr/local/lib/libopencv_shape.so.3.2.0 \

/usr/local/lib/libopencv_stitching.so \

/usr/local/lib/libopencv_stitching.so.3.2 \

/usr/local/lib/libopencv_stitching.so.3.2.0 \

/usr/local/lib/libopencv_superres.so \

/usr/local/lib/libopencv_superres.so.3.2 \

/usr/local/lib/libopencv_superres.so.3.2.0 \

/usr/local/lib/libopencv_video.so \

/usr/local/lib/libopencv_video.so.3.2 \

/usr/local/lib/libopencv_video.so.3.2.0 \

/usr/local/lib/libopencv_videoio.so \

/usr/local/lib/libopencv_videoio.so.3.2 \

/usr/local/lib/libopencv_videoio.so.3.2.0 \

/usr/local/lib/libopencv_videostab.so \

/usr/local/lib/libopencv_videostab.so.3.2 \

/usr/local/lib/libopencv_videostab.so.3.2.0 \

/usr/local/lib/libopencv_viz.so \

/usr/local/lib/libopencv_viz.so.3.2 \

/usr/local/lib/libopencv_viz.so.3.2.0 \

-L/opt/pylon5/lib64 \

-lbxapi-5.0.11 \

-lbxapi \

-lFirmwareUpdate_gcc_v3_0_Basler_pylon_v5_0 \

-lGCBase_gcc_v3_0_Basler_pylon_v5_0 \

-lGenApi_gcc_v3_0_Basler_pylon_v5_0 \

-lgxapi-5.0.11 \

-lgxapi \

-llog4cpp_gcc_v3_0_Basler_pylon_v5_0 \

-lLog_gcc_v3_0_Basler_pylon_v5_0 \

-lMathParser_gcc_v3_0_Basler_pylon_v5_0 \

-lNodeMapData_gcc_v3_0_Basler_pylon_v5_0 \

-lpylonbase-5.0.11 \

-lpylonbase \

-lpylonc-5.0.11 \

-lpylonc \

-lpylon_TL_bcon-5.0.11 \

-lpylon_TL_bcon \

-lpylon_TL_camemu-5.0.11 \

-lpylon_TL_camemu \

-lpylon_TL_gige-5.0.11 \

-lpylon_TL_gige \

-lpylon_TL_usb-5.0.11 \

-lpylon_TL_usb \

-lpylonutility-5.0.11 \

-lpylonutility \

-luxapi-5.0.11 \

-luxapi \

-lXmlParser_gcc_v3_0_Basler_pylon_v5_0 \

 

5、这样配置好了.pro文件,就能开始写程序了

在Linux中调用Basler摄像头,需要一段比较长的代码,代码如下:

//定义是否保存图片

#define saveImages 0

//定义是否记录视频

#define recordVideo 0

// 加载OpenCV API

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/video/video.hpp>

#include<opencv2/opencv.hpp>

//加载PYLON API.

#include <pylon/PylonIncludes.h>

#include <pylon/gige/BaslerGigEInstantCamera.h> //自动调节

//加载C++ 头文件

#include<iostream>

//命名空间.

using namespace Pylon;

using namespace cv;

using namespace std;

using namespace Basler_GigECameraParams; //自动调节

typedef Pylon::CBaslerGigEInstantCamera Camera_t; //自动调节

typedef Camera_t::GrabResultPtr_t GrabResultPtr_t; //自动调节

static const uint32_t c_countOfImagesToGrab = 2000;

int saveImage_flag=0; //保存一张图片

int main()

{

 cout<<"000"<<endl;

//Pylon自动初始化和终止

Pylon::PylonAutoInitTerm autoInitTerm;

try

{

cout<<"0"<<endl;

// 原程序对camera的定义

//CInstantCamera camera(CTlFactory::GetInstance().CreateFirstDevice());

CDeviceInfo info;

info.SetDeviceClass( Camera_t::DeviceClass());

// Create an instant camera object with the first found camera device that matches the specified device class.

Camera_t camera( CTlFactory::GetInstance().CreateFirstDevice( info));

cout<<"1"<<endl;

// 打印相机的名称

std::cout << "Using device " << camera.GetDeviceInfo().GetModelName() << endl;

cout<<"2"<<endl;

//获取相机节点映射以获得相机参数

GenApi::INodeMap& nodemap = camera.GetNodeMap();

cout<<"3"<<endl;

//打开相机

camera.Open();

cout<<"4"<<endl;

//获取相机成像宽度和高度

GenApi::CIntegerPtr width = nodemap.GetNode("Width");

GenApi::CIntegerPtr height = nodemap.GetNode("Height");

cout<<"5"<<endl;

//设置相机最大缓冲区,默认为10

camera.MaxNumBuffer = 5;

// 新建pylon ImageFormatConverter对象.

CImageFormatConverter formatConverter;

cout<<"6"<<endl;

//确定输出像素格式

formatConverter.OutputPixelFormat = PixelType_BGR8packed;

// 创建一个Pylonlmage后续将用来创建OpenCV images

CPylonImage pylonImage;

cout<<"7"<<endl;

//声明一个整形变量用来计数抓取的图像,以及创建文件名索引

int grabbedlmages = 0;

// 新建一个OpenCV video creator对象.

VideoWriter cvVideoCreator;

//新建一个OpenCV image对象.

Mat openCvImage;

// 视频文件名

cout<<"8"<<endl;

std::string videoFileName = "openCvVideo.avi";

// 定义视频帧大小

cv::Size frameSize = Size((int)width->GetValue(), (int)height->GetValue());

cout<<"9"<<endl;

cout<<"Width: "<<frameSize.width<<endl;

cout<<"Height: "<<frameSize.height<<endl;

//设置视频编码类型和帧率,有三种选择

// 帧率必须小于等于相机成像帧率!!!!

cvVideoCreator.open(videoFileName, CV_FOURCC('D', 'I', 'V','X'), 10, frameSize, true);

//cvVideoCreator.open(videoFileName, CV_F0URCC('M','P',,4','2’), 20, frameSize, true);

//cvVideoCreator.open(videoFileName, CV_FOURCC('M', '3', 'P', 'G'), 20, frameSize, true);

cout<<"10"<<endl;

// 开始抓取c_countOfImagesToGrab images.

//相机默认设置连续抓取模式

camera.StartGrabbing(-1, GrabStrategy_LatestImageOnly); //c_countOfImagesToGrab

//抓取结果数据指针

CGrabResultPtr ptrGrabResult;

// 当c_countOfImagesToGrab images获取恢复成功时,Camera.StopGrabbing()

//被RetrieveResult()方法自动调用停止抓取

cout << "Initial Gain = " << camera.GainRaw.GetValue() << endl;

cout << "Initial exposure time = ";

cout << camera.ExposureTimeAbs.GetValue() << " us" << endl;

cout << "Initial balance ratio: ";

camera.BalanceRatioSelector.SetValue(BalanceRatioSelector_Red);

cout << "R = " << camera.BalanceRatioAbs.GetValue() << " ";

camera.BalanceRatioSelector.SetValue(BalanceRatioSelector_Green);

cout << "G = " << camera.BalanceRatioAbs.GetValue() << " ";

camera.BalanceRatioSelector.SetValue(BalanceRatioSelector_Blue);

cout << "B = " << camera.BalanceRatioAbs.GetValue() << endl;

while (camera.IsGrabbing())

{

// 等待接收和恢复图像,超时时间设置为5000 ms.

camera.RetrieveResult(5000, ptrGrabResult, TimeoutHandling_ThrowException);

//如果图像抓取成功

if (ptrGrabResult->GrabSucceeded())

{

// 获取图像数据

// cout <<"SizeX: "<<ptrGrabResult->GetWidth()<<endl;

// cout <<"SizeY: "<<ptrGrabResult->GetHeight()<<endl;

//将抓取的缓冲数据转化成pylon image.

formatConverter.Convert(pylonImage, ptrGrabResult);

// 将 pylon image转成OpenCV image.

openCvImage = cv::Mat(ptrGrabResult->GetHeight(), ptrGrabResult->GetWidth(), CV_8UC3, (uint8_t *) pylonImage.GetBuffer());

//如果需要保存图片

if (saveImages)

{

std::ostringstream s;

// 按索引定义文件名存储图片

s << "image_" << grabbedlmages << ".jpg";

std::string imageName(s.str());

//保存OpenCV image.

imwrite(imageName, openCvImage);

grabbedlmages++;

}

//如果需要记录视频

if (recordVideo)

{

cvVideoCreator.write(openCvImage);

}

//新建OpenCV display window.

namedWindow("OpenCV Display Window", CV_WINDOW_NORMAL); // other options: CV_AUTOSIZE, CV_FREERATIO

//显示及时影像.

if(!openCvImage.data)

{

cout<<"opencvImage fail"<<endl;

continue;

}

imshow("OpenCV Display Window", openCvImage);

if(saveImage_flag==0) //只保存一张图片

{

imwrite("/home/fsac/2.jpg",openCvImage);

saveImage_flag=1;

}

// Define a timeout for customer's input in

// '0' means indefinite, i.e. the next image will be displayed after closing the window.

// '1' means live stream

waitKey(10);

}

else

{

cout<<"图像读取失败,即ptrGrabResult->GrabSucceeded()未成功"<<endl;

continue;

}

}

if(!camera.IsGrabbing())

cout<<"camera.IsGrabbing() is failed"<<endl;

}

catch (GenICam::GenericException &e)

{

// Error handling.

cerr << "An exception occurred." << endl

<< e.GetDescription() << endl;

}

return 0;

}

 

相关主题

Ubuntu 18.04打印服务器惠普P1106配置

精选文章
热门文章